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Localized electromagnetic and weak gravitational fields in the source-free space

G. N. Borzdov*
Department of Theoretical Physics, Belarusian State University, Fr. Skaryny avenue 4, 220050 Minsk, Belarus

~Received 13 March 2000; revised manuscript received 23 October 2000; published 21 February 2001!

Localized electromagnetic and weak gravitational time-harmonic fields in the source-free space are treated
using expansions in plane waves. The presented solutions describe fields having a very small~about several
wavelengths! and clearly defined core region with maximum intensity of field oscillations. In a given Lorentz
frameL, a set of the obtained exact time-harmonic solutions of the free-space homogeneous Maxwell equations
consists of three subsets~storms, whirls, and tornados!, for which time average energy flux is identically zero
at all points, azimuthal and spiral, respectively. In any other Lorentz frameL8, they will be observed as a kind
of electromagnetic missile moving without dispersing at speedV,c. The solutions that describe finite-energy
evolving electromagnetic storms, whirls, tornados, and weak gravitational fields with similar properties are
also presented. The properties of these fields are illustrated in graphic form.
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I. INTRODUCTION

In the beginning of the 1980s, Brittingham@1# proposed
the problem of searching for specific electromagne
waves—focus wave modes—having a three-dimensio
pulse structure, being nondispersive for all time, and mov
at light velocity in straight lines. Some packetlike solutio
have been presented@1–3#, but it seems likely that finite-
energy focus wave modes cannot exist without sour
@3–5#. In 1985, Wu@5# proposed the concept of electroma
netic missiles moving at light velocity and having a ve
slow rate of decrease with distance.

In our previous publications@6–9#, we have investigated
linear fields defined by a given set of orthonormal sca
functions on either a two-dimensional or a three-dimensio
manifold. The suggested approach@7# makes it possible to
obtain families of orthonormal beams and other specific
act solutions of wave equations. It can be applied to a
linear field, such as electromagnetic waves in free sp
isotropic, anisotropic, and bianisotropic media, elastic wa
in isotropic and anisotropic media, sound waves, weak gr
tational waves, etc. As examples we have presented ele
magnetic orthonormal beams and three-dimensional stan
waves in free space and isotropic media@6–9#, including the
chiral ones@9#.

By forming convenient functional bases for compl
fields, the orthonormal beams provide a means to genera
the free-space techniques@10–14# for characterizing com-
plex media as well as the covariant wave-splitting techniq
@15# to the case of incident beams. The three-dimensio
standing waves give a unique global description of the co
plex medium under study, which is supplementary to
eigenwave description. Even in free space they possess
interesting properties@6–9#.

In this paper, we present unique solutions that desc
localized electromagnetic and weak gravitational fields w
possible applications in physics and astrophysics. The p
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of the paper is as follows. In Sec. II we sketch the basics
plane-wave superpositions defined by a given set of ort
normal scalar functions on a real manifold. Localized ele
tromagnetic and gravitational time-harmonic fields a
treated in Secs. III–V. Moving and evolving fields are brie
discussed in Sec. VI. Concluding remarks are made in S
VII.

II. BASIC EQUATIONS

A. Fields defined by orthonormal functions on a real manifold

Let (un) be a set of complex scalar functions on a re
manifold Bu , satisfying the orthogonality conditions

^umuun&[E
Bu

um* ~b!un~b!dB5dmn , ~2.1!

wheredB is the infinitesimal element ofBu , um* is the com-
plex conjugate function toum , anddmn is the Kroneckerd
function. Let us consider a plane-wave superposition~termed
below the ‘‘beam’’ for the sake of brevity!

Wn~x!5E
B u

eix•K (b)un~b!n~b!W~b!dB

5E
B
eix•K (b)un~b!n~b!W~b!dB, ~2.2!

wherex and K are the four-dimensional position and wav
vectors, andB is a subset ofBu with nonvanishing values o
functionW85n(b)W(b). Here,W can be any of the follow-
ing quantities: the electric~magnetic! field vectorE (B), the
six-dimensional vector col(E,B), the four-dimensional field
tensorF ~for electromagnetic waves!, the small variationh of
the metric tensor~for weak gravitational waves!. A set of
plane waves forming the beam~beam base! is specified by
functionsK5K (b) andW5W(b), whereas a beam state
given by a complex scalar functionn5n(b).

There are four key elements defining the properties
these beams: the set of functionsun5un(b), the beam mani-
fold B, the beam base, and the beam state functionn
©2001 The American Physical Society06-1
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G. N. BORZDOV PHYSICAL REVIEW E 63 036606
5n(b). By setting these elements in various ways, one
obtain a multitude of interesting fields@6–9#, among them
orthonormal beams satisfying the condition

^WmuQuWn&[E
s0

Wm
† ~x!QWn~x!ds05NQdmn ,

~2.3!

wheres0 is either a two-dimensional or a three-dimension
manifold, Q is some Hermitian operator, andWm

† (x) is the
Hermitian conjugate ofWm(x).

Time-harmonic beams with two-dimensional manifoldB
can be written as@7#

Wn~r ,t !5e2 ivtE
B
ei r•k(b)un~b!n~b!W~b!dB, ~2.4!

wherer and k are the three-dimensional position and wa
vectors in a Lorentz frameL with basis (ei), i.e., x5r
1cte4 andK5k1(v/c)e4. Here,c is the velocity of light in
vacuum,t is the time inL, v is the angular frequency,ei

2

51, i 51,2,3, ande4
2521.

It can be shown@7# that these beams become orthonorm
provided the following conditions are met.

~i! s0 is a plane with unit normalq, passing through the
point r50.

~ii ! The tangential component

t~b!5k~b!2q@q•k~b!# ~2.5!

of k(b) is real for all bPB, and the mappingb°t(b) is
one-one~injective!.

~iii ! B5Bu , and the functionn(b) is given by

n~b!5
1

2p
A NQJ~b!

g~b!W†~b!QW~b!
. ~2.6!

Here,J(b)5D(t j )/D(j i) is the Jacobian determinant of th
mappingb°t(b), calculated in terms of the local coordina
systems (j i ,i 51,2) and (t j , j 51,2), anddB5g(b)dj1dj2.

In this paper, we treat electromagnetic fields in free sp
and weak gravitational fields, defined by the spherical h
monicsYj

s(u,w) as

W j
s~r ,t !5e2 ivtE

0

2p

dwE
u1

u2
ei r•k(u,w)Yj

s~u,w!

3n~u,w!W~u,w!sinu du, ~2.7!

where

Yl
m~u,w!5NlmPl

umu~cosu!eimw, ~2.8!

Nlm5A~2l 11!~ l 2umu!!
4p~ l 1umu!!

, ~2.9!

and Pl
m(cosu) are the spherical Legendre functions@16,17#.

For these fields,Bu is a unit sphere (Bu5S2), B is its zone
with uP@u1 ,u2# andwP@0,2p#, anddB5sinu du dw.
03660
n
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By using the Rayleigh formula@16#, the fields under con-
sideration can be expanded into a series as@7#

W j
s~r ,t !5e2 ivt(

l 50

1`

i l j l~kr ! (
m52 l

l

Yl
m~ r̂ !W l

m , ~2.10!

wherek52p/l5v/c, j l(kr) are the spherical Bessel func
tions @16,17#, Yl

m( r̂ )5Yl
m(g,c), and

r̂5r /r 5sing~e1 cosc1e2 sinc!1e3 cosg. ~2.11!

The coordinate independent vector coefficientsW l
m com-

pletely characterize these fields@7#.

B. Beam bases

To set the beam base of fieldsW j
s(r ,t) ~2.7!, it is neces-

sary to specify propagation directions@unit wave normalsk̂
[k/k5 k̂(u,w)# and polarizations@normalized vector ampli-
tudesW(u,w)# of all partial plane waves. The former can b
set both for electromagnetic and weak gravitational fields

k̂~u,w!5sinu8~e1 cosw81e2 sinw8!1e3 cosu8,
~2.12!

whereu85u8(u,w) andw85w8(u,w) are some given func-
tions. In this paper, we restrict our consideration to bea
with

u85k0u, w85w, ~2.13!

wherek0 is some real parameter, 0,k0<1. Each of these
beams comprises plane waves with wave normalsk̂ lying in
the same solid angleV52p(cosk0u12cosk0u2).

To set the amplitude functions, it is convenient to use
unit basis vectors

er~u8,w!5sinu8~e1 cosw1e2 sinw!1e3 cosu8,
~2.14a!

eu8~u8,w!5cosu8~e1 cosw1e2 sinw!2e3 sinu8,
~2.14b!

ew~w!52e1 sinw1e2 cosw. ~2.14c!

1. Amplitude functions for electromagnetic fields

To treat electromagnetic beams in free space, we set

W5S E

BD , Q5
c

16p S 0 2q3

q3 0 D , ~2.15!

where q3 is the antisymmetric tensor dual toq(q3E5q
3E). The normal component of time average Poynting
vectorS can be written asSq5q•S5W†QW. Therefore, the
condition^W j

suQuW j
s&5NQ is in fact the normalization to the

beam energy fluxNQ through the planes0. We assume be-
low that q5e3.

Let us set two amplitude functions by
6-2
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LOCALIZED ELECTROMAGNETIC AND WEAK . . . PHYSICAL REVIEW E63 036606
W~u,w![S E

BD 5S eu8

ew
D ~2.16a!

5S ew

2eu8
D . ~2.16b!

Beams with the amplitude functionW @Eq. ~2.16a!# are
formed from plane waves with the meridional orientation
E and the azimuthal orientation ofB. They will be referred
to asEM beams orBA beams. Similarly, the amplitude func
tion W @Eq. ~2.16b!# results inEA beams orBM beams. Since
the field vectors ofEM and EA beams are related by th
duality transformationE→B, B→2E, we treat below only
the EM beams.

2. Amplitude functions for weak gravitational fields

The gravitational fields are governed by the nonline
Einstein equations, which can be linearized in the case
weak fields@18#. Let

g0
215e1^ e11e2^ e21e3^ e32e4^ e4 ~2.17!

be the twice contravariant metric tensor of free space, wh
^ is the tensor product. A weak gravitational wave can
treated as a small variationh of the metric tensorg21

5g0
211h. For each plane weak gravitational wave, the

exists a reference frame in which this wave is transve
@18#. A transverse wave with the wave vectork5ker satisfies
the conditionsh•er5h•e450 ander•h5e4•h50. It is de-
scribed by a symmetric tensorh with zero trace (ht50) and
has two independent polarization states given by

h1~u,w!5 1
2 ~eu8^ eu82ew ^ ew!, ~2.18a!

h2~u,w!5 1
2 ~eu8^ ew1ew ^ eu8!. ~2.18b!

To obtain orthonormal gravitational beams, we use
amplitude functions

h6~u,w!5h16 ih25 1
2 ~eu86 iew! ^ ~eu86 iew!.

~2.19!

These amplitudes satisfy the relations

~h6
† Q6h6! t5cosu8, ~h6

† Q6h7! t50 ~2.20!

with Q656 ie3
3 .

C. Quasimonochromatic beams

In this paper, we also treat beamsW̆ j
s(r ,t) with three-

dimensional beam manifoldB35B3@v2 ,v1#, related with
W j

s(r ,t) @Eq. ~2.7!# as

W̆ j
s~r ,t !5

1

2DvEv2

v1

W j
s~r ,t !dv, ~2.21!

where Dv5(v12v2)/2. In the case of quasimonochro
matic beams,Dv!v.
03660
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The function W(u,w) is frequency-independent. If th
beam state functionn(u,w) also is frequency-independen
or its frequency dependence is negligibly small, we have

W̆ j
s~r ,t !5e2 ivtE

0

2p

dwE
u1

u2
ei r•k(u,w)Yj

s~u,w!

3 j 0$p0@r•k~u,w!2vt#%

3n~u,w!W~u,w!sinu du, ~2.22!

wherev5(v11v2)/2 andp05Dv/v. Hence, the beam is
formed from plane-wave packets moving with the light v
locity c. Upon integratingW̆ j

s(r ,t) with respect to spatia
coordinates, we obtain the norm

iW̆ j
si[E W̆ j

s†~r ,t !W̆ j
s~r ,t !dV

5
4p3c3

k0v2Dv
E

0

2p

dwE
u1

u2
uYj

s~u,w!n~u,w!u2

3
sin2u

sin~k0u!
W†~u,w!W~u,w!du. ~2.23!

For the beams under consideration, this norm is finite.
particular, for electromagnetic fields with the amplitud
functionsW @Eqs.~2.16!#, we haveW†W5uEu21uBu2, i.e.,
iW̆ j

si is proportional to the total energy of the field.

III. ORTHONORMAL ELECTROMAGNETIC BEAMS

In this section, we consider the time-harmonic beamsW j
s

@Eq. ~2.7!# with u150 andu2<p/2.

A. Beams with VÄ2p and k0Ä1

To obtain families of orthonormal beams withV52p,
one can setu150, u25p/2, andk051. In this case, the
beam manifoldB is the northern hemisphereSN

2 of S2, and
the functionn5n(u,w) reduces to a constant. Electric an
magnetic fields as well as energy parameters of such or
normal beams are found in explicit form in Ref.@7#. In par-
ticular, it is shown that time average energy densitieswe and
wm of electric and magnetic fields, and Poynting’s vectorS,
can be written as

we5w0wM , wm5w0wA , w05S0 /c, ~3.1!

S5S0~SR8eR1SA8eA1SN8 e3!, S05NQ /l2, ~3.2!

where

eR5e1 cosc1e2 sinc, ~3.3a!

eA52e1 sinc1e2 cosc, ~3.3b!

r5ReR1ze3 , R5r sing, z5r cosg, ~3.3c!

and we , wm , SR8 , SA8 , and SN8 are independent of the az
muthal anglec. Some energy characteristics, such as
6-3
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G. N. BORZDOV PHYSICAL REVIEW E 63 036606
dependence ofSN8 and SA8 on R at the planez50, are pre-
sented in Ref.@7#. However, to gain a better insight into th
unique properties of these beams, an analysis of the sp
distributions of energy density and energy fluxes is need

To illustrate the spatial distribution of the normalized e
ergy densityw85wM1wA , it is sufficient to calculate val-
ues ofw8 in a meridional plane. High energy density in
very small core region~see Fig. 1! is a distinguishing feature
of the fields under consideration.

For the beams defined by the zonal spherical harmo
(s50), SA8[0 @7#. Lines of energy flux for such beams lie i
meridional planes~see Figs. 2 and 3!. For the beams withs
Þ0, lines of energy flux have twisting and spiral forms~see
Fig. 4!. Such localized fields can be described as a kind
electromagnetic ‘‘tornados.’’

FIG. 1. Normalized energy densityw85wM1wA ; R85R/l;
z85z/l; V52p; j 5s52.

FIG. 2. Poynting’s vector field in the planex250; V52p; j
52, s50; x85x1/l; z85x3/l.
03660
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B. Beams with VÏ2p and k0Ï1Õ2

The beam base used above results in two different set
orthonormal beams defined by the spherical harmonicsYj

s

with even and oddj, respectively. But it may be advanta
geous to obtain a complete system of orthonormal bea
W j

s , defined by the whole set of spherical harmonicsYj
s , for

which ^W j
suQuW j 8

s8&50 if at least one of the three condition
is met: j 8Þ j , s8Þs, or the beams have the alternative p
larization states (EM andEA beams!.

FIG. 3. Poynting’s vector field with whirl structure; the param
eters of the beam and the notations are the same as for Fig. 2

FIG. 4. Lines of energy flux;V52p; j 5s52; x85x1/l; y8
5x2/l; z85x3/l.
6-4
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LOCALIZED ELECTROMAGNETIC AND WEAK . . . PHYSICAL REVIEW E63 036606
To this end, let us set the beam base by Eqs.~2.12!–~2.16!
with u150, u25p, andk0< 1

2 . In this case, the beam man
fold is the unit sphere (B5S2), V52p(12cosk0p)<2p,
and

n~u!5
2

l
A2pk0NQ sin~k0u!

c sinu
. ~3.4!

The smallerk0 is, the smaller isV, i.e., the beam be
comes more collimated. Conversely, ifk051/2, i.e., V
52p, the beam has a pronounced core region~see Fig. 5!.
WhensÞ0 andk05 1

2 , or k0' 1
2 , such beams also resemb

electromagnetic tornados with spiral energy fluxes.

IV. ELECTROMAGNETIC STORMS, WHIRLS,
AND TORNADOS

Let us briefly outline unique properties of time-harmon
localized fieldsW j

s @Eq. ~2.7!# with u150, p/2<u2<p, and
k051, i.e., with u85u and 2p<V<4p. For the sake of
simplicity, we assume that the beam state functionn
5n(u,w) reduces to a constant. A set of these exact tim
harmonic solutions of the free-space homogeneous Max
equations consists of three subsets—‘‘storms,’’ ‘‘whirls
and ‘‘tornados’’—for which time average energy flux
identically zero at all points, azimuthal and spiral, resp
tively.

If u25p, B5S2, andV54p, the fields under consider
ation are formed from plane waves of all possible propa
tion directions. They are in effect three-dimensional stand
waves with a rather involved structure of interrelated elec
and magnetic fields@6–9#.

For EA andBA electromagnetic storms, both of which a
defined by the zonal spherical harmonics (s50), the time
average Poynting vectorS is vanishing at all points@6–9#.
The electric fieldE of EA storms has the only nonvanishin
component~azimuthal!, whereas the azimuthal component
the magnetic fieldB is everywhere zero. The opposite situ
tion occurs withBA storms.

The spherical harmonics withsÞ0 define electromagneti

FIG. 5. Normalized energy densityw85wM1wA ; R85R/l;
z85z/l; V52p; k051/2; j 52, s50.
03660
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whirls for which the time average Poynting vectorS has the
only nonvanishing component~azimuthal!, i.e., S5S0SA8eA

@6–9#. This component, as well as the energy densitieswe
andwm of the electric and magnetic fields, is independent
the azimuthal anglec. The whirls with j .s>1 have two
major domains~above and below the equatorial plane! with
large energy fluxes@8#. The whirls with j 5s>1 have only
one such domain, and the energy flux peaks in the equat
plane.

Let us now consider a family of fieldsW j
s @Eq. ~2.7!# with

u150, p/2,u2,p, and k051, i.e., with u85u and 2p
,V,4p. Similar to storms and whirls, these fields a
highly localized. However, the normal and radial comp
nents of time average Poynting’s vectorS are not vanishing.
As a result, lines of energy flux become spiral~see Fig. 6!,
provided thatsÞ0. Figure 6 shows a typical energy flux lin
of such a field. We refer to these unique localized fields w
spiral energy flux lines as electromagnetic tornados. T
bear some similarities to the fields treated in Sec. III A, b
their lines of energy flux more closely resemble spirals.
u2 tends top, the step of these spirals decreases.

For the fields withs50, u150, p/2,u2,p, and k0
51, the lines of energy flux lie in meridional planes. The
fields are intermediate in properties between the electrom
netic storms and the beams withs50 andV52p ~see Sec.
III A !.

V. LOCALIZED WEAK GRAVITATIONAL FIELDS

Electromagnetic and weak gravitational plane waves
described by antisymmetricF and symmetric h four-

FIG. 6. Line of energy flux;u255p/6; j 54, s52; x85x1/l;
y85x2/l; z85x3/l.
6-5
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G. N. BORZDOV PHYSICAL REVIEW E 63 036606
dimensional field tensors, respectively. Both tensors h
zero trace. For each family of electromagnetic fields trea
in the previous sections, there exists a similar family of we
gravitational fields defined by the same spherical harmon
Some significant features, such as the localization of fi
oscillations, are characteristic for both fields. In this secti
we present two types of localized weak gravitational fields
the source free space, defined by Eqs.~2.7!, ~2.18!, and
~2.19! with k051 (u85u).

A. Orthonormal gravitational beams with VÄ2p

To obtain orthonormal gravitational beams withV52p,
we setu150, u25p/2, k051, and replaceW(u,w) @Eq.
~2.7!# by h6(u,w) @Eq. ~2.19!#. In this case, the functionn
@Eq. ~2.6!# reduces to a constant, and the beams are defi
by the real parts of complex tensor functions

h6~x!5h6~r ,t !

5n4e2 ivtE
0

2p

dwE
0

p/2

eikr•er (u,w)Yj
s~u,w!

3h6~u,w!sinu du

5
n4

2
ei (sc2vt)$rI j

ss22@11cos262 cos#

1r* I j
ss12@11cos272 cos#

2r2I j
ss21@sin+262 sin#

2r2* I j
ss11@sin+272 sin#1~r32r1!I j

ss@sin2#%,

~5.1!

where

r5e^ e, r15e^ e* 1e* ^ e5 1
2 ~12r3!, ~5.2a!

r25 1
2 ~e^ e31e3^ e!, r35e3^ e3 , ~5.2b!

e5~eR1 ieA!/2, n45
1

l
A2NQ. ~5.3!

Complex scalar functionsI j
sm@ f #5I j

sm@ f #(r ,g) are defined
by the spherical harmonicsYj

s , an integerm, and a scalar
function f 5 f (u). The definitions and the properties of the
functions are presented in Ref.@7#. The above notations em
phasize the fact thatI j

sm@ f #(r ,g) at fixed r andg are func-
tionals regardingf. For any givenf, I j

sm@ f #(r ,g) is a function
of r and g. When it will not cause a misunderstanding, w
omit the arguments (r ,g) and/or@ f #. The real and imaginary
parts ofI j

sm can be separated as@7#

I j
sm5 i umu~Jj 0

sm1 iJ j 1
sm!. ~5.4!

The intensity of metric oscillations is characterized by t
norm w5(hh†) t . Hence, we obtain
03660
e
d
k
s.
ld
,

n

ed

w65~h6
† h6! t

5
n4

2

16 (
p50

1

$~Jjp
ss22@11cos262 cos# !2

1~Jjp
ss12@11cos272 cos# !21~Jjp

ss21@sin+262 sin# !2

1~Jjp
ss11@sin+272 sin# !216~Jjp

ss@sin2# !2%. ~5.5!

Naturally, the normalization constantNQ @Eq. ~2.3!# must
satisfy the conditionw6!1. Then we obtain

^h6uQ6uh6&5E
s0

~h6
† Q6h6! tds05NQ , ~5.6!

where the integrand is given by

~h6
† Q6h6! t56

n4
2

8 (
p50

1

$~Jjp
ss22@11cos262 cos# !2

2~Jjp
ss12@11cos272 cos# !21 1

2 ~Jjp
ss21@sin+2

62 sin# !22 1
2 ~Jjp

ss11@sin+272 sin# !2%. ~5.7!

If s50, the latter reduces to

~h6
† Q6h6! t5n4

2(
p50

1

$Jjp
02@cos#Jjp

02@11cos2#

1 1
2 Jjp

01@sin#Jjp
01@sin+2#%, ~5.8!

and w15w2 . For the beamsh2 and h1 , defined by the
spherical harmonicY3

2, the intensity of metric oscillations is
illustrated in Figs. 7 and 8.

Orthonormal gravitational beams withV<2p and k0
< 1

2 can be obtained by using a beam state function t
differs from n(u) @Eq. ~3.4!# only by a constant factor.

B. Gravitational whirls and storms

Let us now setu150, u25p, k051, and define the am
plitude function by Eqs.~2.18!, assuming that the beam sta

FIG. 7. Normalized intensityw8 of metric oscillationsw8
52w2 /n4

2; R85R/l; z85z/l; V52p; j 53; s52.
6-6



o
o

a
a

re

il-

ical

LOCALIZED ELECTROMAGNETIC AND WEAK . . . PHYSICAL REVIEW E63 036606
function n reduces to a constant. This results in two sets
weak gravitational fields that are defined by the real parts
the complex tensor functions

hn~x![hn~r ,t !5n4e2 ivtE
0

2p

dwE
0

p

eikr•er (u,w)

3Yj
s~u,w!hn~u,w!sinu du, ~5.9!

wheren51,2, and the scalar coefficientn4 specifies the am-
plitudes of partial plane waves (n4!1). Substitution ofh1
andh2 @Eq. ~2.18!# in Eq. ~5.9! yields

h15n4i usu1pei (sc2vt)$ra~s!Jjp
ss22@11cos2#

1r* a~2s!Jjp
ss12@11cos2#2r2~21!qb~2s!

3Jjq
ss21@sin+2#2r2* ~21!qb~s!Jjq

ss11@sin+2#

1~r32r1!Jjp
ss@sin2#%, ~5.10a!

h252n4i usu1pei (sc2vt)$ra~s!~21!pJjq
ss22@cos#

2r* a~2s!~21!pJjq
ss12@cos#

2r2b~2s!Jjp
ss21@sin#1r2* b~s!Jjp

ss11@sin#%,

~5.10b!

where

b~s!5H 21 ~s521,22, . . . !

1 ~s50,1,2, . . . !,
~5.11!

a(s)52d1s21, p512q50 if j 1usu is even, andp51
2q51 if j 1usu is odd. The traces and the four-dimension
determinants of these tensors are vanishing at all points,
e4•hn5hn•e4[0, n51,2.

The intensities of metric oscillations for these fields a
given by

FIG. 8. Normalized intensityw8 of metric oscillationsw8
52w1 /n4

2; R85R/l; z85z/l; V52p; j 53; s52.
03660
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w15
n4

2

4
$~Jjp

ss22@11cos2# !21~Jjp
ss12@11cos2# !2

1~Jjq
ss21@sin+2# !21~Jjq

ss11@sin+2# !216~Jjp
ss@sin2# !2%,

~5.12a!

w25n4
2$~Jjq

ss22@cos# !21~Jjq
ss12@cos# !2

1~Jjp
ss21@sin# !21~Jjp

ss11@sin# !2%. ~5.12b!

Figures 9 and 10 illustrate the intensity of the metric osc
lations in the core regions of the whirlsh1 andh2, defined by
the spherical harmonicY3

1.
Gravitational storms are defined by the zonal spher

harmonics as

h15
n4

2
i pe2 ivt$~eA^ eA2eR^ eR!Jjp

02@11cos2#

2~eR^ e31e3^ eR!~21!qJjq
01@sin+2#

12~r32r1!Jjp
00@sin2#%, ~5.13a!

FIG. 9. Normalized intensityw8 of metric oscillationsw8
52w1 /n4

2; R85R/l; z85z/l; V54p; j 53; s51.

FIG. 10. Normalized intensityw8 of metric oscillationsw8
52w2 /n4

2; R85R/l; z85z/l; V54p; j 53; s51.
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h25n4i 2qe2 ivt$~eR^ eA1eA^ eR!~21!pJjq
02@cos#

1~eA^ e31e3^ eA!Jjp
01@sin#%. ~5.13b!

VI. MOVING AND EVOLVING STORMS, WHIRLS,
AND TORNADOS

The localized electromagnetic and gravitational fields d
cussed above are time-harmonic in the Lorentz refere
frameL with basis (ei). In any other Lorentz frameL8 with
basis (ei8), they will be observed as a kind of electromagne
@7# or gravitational missile moving without dispersing
speedV,c. Because of the very involved dependence
complex fieldsE, B, or h on time and spatial coordinate
parametersuEu2, uBu2, or w5(hh†) t provide only a rough
idea of the missile field structure@7#, whereas instantaneou
values of real fields give an accurate picture. Figures 11
12 illustrate both the localization of field oscillations and t
asymmetry~Fig. 11! caused by the movement of whirls.

The time-harmonic solutions presented in the previo
sections can be applied as reasonably accurate models o
physical fields. A more realistic description can be achiev
by integrating these solutions with respect to frequency@7#.
As illustration, let us consider basic properties of quasim
nochromatic fields defined by Eqs.~2.21! and ~2.22!. To be
specific, we discuss below evolving electromagnetic whi
but other evolving electromagnetic and weak gravitatio
fields ~storms and tornados! can be treated similarly.

The fieldW̆ j
s(r ,t) @Eq. ~2.22!# is formed from the infini-

tesimal plane-wave packets with the envelope function

j 0~p0w0!5
sin~p0w0!

p0w0
, ~6.1!

wherew05r•k(u,w)2vt. Sincep0!1, the field can be de
scribed as an evolving whirl in the neighborhood of the po

FIG. 11. Normalized instantaneous energy densityw8 of an
electromagnetic whirl moving with the velocityV50.4c e18 with

respect to the frameL8; j 54; s52; x85x18/l; y85x28/l; x38

50.
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r50. At t50, the whirl reaches its maximum intensity an
closely resembles a time-harmonic whirl. In particular, lin
of energy flux are circular for both whirls. At2p/Dv,t
,0 and 0,t,p/Dv, the energy flux lines of the evolving
whirl are convergent~Fig. 13! and divergent~Fig. 14!, re-
spectively. Whent→6`, the field tends to zero at all point
r .

FIG. 13. Convergent lines of energy flux of an evolving elect
magnetic whirl;V54p; j 5s54; p50.05; ct527l; x85x1/l;
y85x2/l; z85x3/l.

FIG. 12. Normalized instantaneous energy densityw8 of an
electromagnetic whirl moving with the velocityV50.4c e18 with

respect to the frameL8; j 54; s52; x85x18/l; z85x38/l; x28

50.
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The evolution of the field can be described as follows.
whirl originates at infinity att52` as an infinitely small
converging wave. Att!2p/Dv, there is a very small con
verging wave with a maximum peak at the distancer
52ct ~see curveA in Fig. 15!. During all this time, there is
also a weak whirl in the neighborhood of the pointr50. It
passes through maxima and minima of activity, gradua
gaining in intensity ast→0. Figure 15 illustrates the radia
energy fluxes at two different instants of minimum wh
activity. The total field can be described as the superposi
of converging and expanding waves with ever-changing p
portion. At t.0, the whirl, still passing through maxima an
minima of activity, gradually transforms into an expandi
wave ~see curveB in Fig. 15!, which vanishes in infinity as
t→1`. It follows from Eq.~2.23! that the evolving storms
whirls, and tornados have finite total energy.

VII. CONCLUSION

Unique solutions of wave equations, which describe loc
ized electromagnetic and weak gravitational time-harmo
fields in the source-free space, are obtained using expans
in plane waves. These fields have a very small and cle
defined core region with maximum intensity of field oscill
tions. Outside the core, the intensity of oscillations rapi
decreases in all directions. Each family of solutions cons
of vector or tensor functions that have integral expansion
plane waves propagating in the same given solid angleV.

Our main concern in this paper is with the families
orthonormal beams withV52p and the families of three
dimensional standing waves withV54p. In addition, some

FIG. 14. Divergent lines of energy flux of an evolving electr

magnetic whirl;V54p; j 5s54; p50.05; ct58l; x85x18/l;

y85x18/l; z85x38/l.
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specific electromagnetic fields withV<2p and 2p<V
<4p are presented.

The peculiarities of energy transport in such fields a
illustrated by the example of localized electromagne
fields. In a given Lorentz frameL, a set of the obtained exac
time-harmonic solutions of the free-space homogene
Maxwell equations consists of three subsets~storms, whirls,
and tornados! for which time average energy flux is ident
cally zero at all points, azimuthal and spiral, respectively.
any other Lorentz frameL8, they will be observed as a kind
of electromagnetic missile moving without dispersing
speedV,c.

The properties of evolving fields, obtained by integrati
the time-harmonic solutions with respect to frequency,
briefly outlined. Since evolving electromagnetic storm
whirls, tornados, and various types of moving and evolv
missiles are described by the exact solutions of Maxwe
equations and have finite total energy, they may exist in
ture or can be excited. To this end, the modern antenna t
nology @19# provides promising tools, such as large arr
antennas with tens of thousands and even well over 100
elements, active integrated antennas, and beam-form
techniques.

In this paper, the localized gravitational fields are trea
in the linear approximation. This gives grounds to propo
the problem of searching for exact solutions of the Einst
empty space field equations, which reduce, in the case
weak fields, to the solutions presented above. In solving
problem, the evolving weak fields can be used as the in
conditions. To this end, it is necessary to set the initial m
mentt0!2p/Dv and the parameterNQ in such a way as to
obtain a weak converging wave att<t0. If NQ is sufficiently
small, the evolving field will remain everywhere weak at a
t.t0. However, by decreasingt0 and increasingNQ , one
can set the initial conditions to search for a nonlinear evo
ing field that is everywhere weak and can be described by
presented solutions only att<t0. The further evolution of
this converging wave should be investigated by solving
Einstein equations.

FIG. 15. Radial componentSR8 of the normalized energy flux
vector as a function ofR85R/l ; z50; j 5s54; Dv/v50.05; (A)
ct5240l; (B) ct530l.
6-9
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