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Localized electromagnetic and weak gravitational fields in the source-free space
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Localized electromagnetic and weak gravitational time-harmonic fields in the source-free space are treated
using expansions in plane waves. The presented solutions describe fields having a verfalsonalseveral
wavelengthsand clearly defined core region with maximum intensity of field oscillations. In a given Lorentz
framelL, a set of the obtained exact time-harmonic solutions of the free-space homogeneous Maxwell equations
consists of three subsdtstorms, whirls, and tornadipgor which time average energy flux is identically zero
at all points, azimuthal and spiral, respectively. In any other Lorentz flam#ey will be observed as a kind
of electromagnetic missile moving without dispersing at spéedt. The solutions that describe finite-energy
evolving electromagnetic storms, whirls, tornados, and weak gravitational fields with similar properties are
also presented. The properties of these fields are illustrated in graphic form.
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I. INTRODUCTION of the paper is as follows. In Sec. Il we sketch the basics of

- i plane-wave superpositions defined by a given set of ortho-
In the beginning of the 1980s, Brittinghajti] proposed normal scalar functions on a real manifold. Localized elec-

the problem of searching for specific eI‘:"Cm,)m""gn,euctromagnetic and gravitational time-harmonic fields are
waves—focus wave modes—having a three-dimensiongleateq in Secs. I11-V. Moving and evolving fields are briefly

pulse structure, being nondispersive for all time, and movingjiscussed in Sec. VI. Concluding remarks are made in Sec.
at light velocity in straight lines. Some packetlike solutionsy.

have been presentdd—3|, but it seems likely that finite-

energy focus wave modes cannot exist without sources II. BASIC EQUATIONS

[3-5]. In 1985, Wu[5] proposed the concept of electromag-

neuc mlss|les mOV|ng at ||ght Ve|OC|ty and hav|ng a Very A. Fields defined by orthonormal functions on a real manifold

slow rate of decrease with distance. Let (u,) be a set of complex scalar functions on a real
In our previous publicationg5—9], we have investigated manifold 53,, satisfying the orthogonality conditions
linear fields defined by a given set of orthonormal scalar
functions on either a two-dimensional or a three-dimensional
manifold. The suggested approalchh makes it possible to
obtain families of orthonormal beams and other specific ex-
act solutions of wave equations. It can be applied to anyvheredB is the infinitesimal element a8, , uy, is the com-
linear field, such as electromagnetic waves in free spacgllex conjugate function tai,, anddy,, is the Kroneckers
isotropic, anisotropic, and bianisotropic media, elastic waveunction. Let us consider a plane-wave superposittermed
in isotropic and anisotropic media, sound waves, weak gravibelow the “beam” for the sake of brevity
tational waves, etc. As examples we have presented electro-
magnetic orthonormal beams and three-dimensional standing _ ix-K(b)
waves in free space and isotropic mea9], including the Wi(x) Lue Un(b)¥(b)W(b)dB
chiral oneq9].
By forming convenient functional bases for comple>§ :f X K®y (b)y(b)W(b)dB, 2.2
fields, the orthonormal beams provide a means to generalize B
the free-space techniqué¢s0-14 for characterizing com-
plex media as well as the covariant wave-splitting techniquavherex andK are the four-dimensional position and wave
[15] to the case of incident beams. The three-dimensionaectors, and3 is a subset o3, with nonvanishing values of
standing waves give a unique global description of the comfunctionW'’ = »(b)W(b). Here,W can be any of the follow-
plex medium under study, which is supplementary to theng quantities: the electritmagneti¢ field vectorE (B), the
eigenwave description. Even in free space they possess vesix-dimensional vector colf,B), the four-dimensional field
interesting propertieg5—9. tensorF (for electromagnetic wavgsthe small variatiorh of
In this paper, we present unique solutions that describéhe metric tensoffor weak gravitational wavesA set of
localized electromagnetic and weak gravitational fields withplane waves forming the beatbeam basgis specified by
possible applications in physics and astrophysics. The plafunctionsK =K (b) andW=W(b), whereas a beam state is
given by a complex scalar function=v(b).
There are four key elements defining the properties of
*FAX: +375 172 20 62 51. these beams: the set of functioms=u,(b), the beam mani-
Email address: borzdov@phys.bsu.unibel.by fold B, the beam base, and the beam state function

<Um|Un>ELg Urn(b)un(b)dB= oy, (2.1)
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=p(b). By setting these elements in various ways, one can By using the Rayleigh formulfl6], the fields under con-

obtain a multitude of interesting field$—9], among them
orthonormal beams satisfying the condition

(W[ QW)= L W () QW (x)do=NgSmn,
(2.3

whereoy is either a two-dimensional or a three-dimensional
manifold, Q is some Hermitian operator, arWﬁ](x) is the
Hermitian conjugate ofV,(X).

Time-harmonic beams with two-dimensional manifdd
can be written a§7]

Wn(r,t)=e*iwtfge”'k@)un(b)y(b)W(b)dB, (2.4

wherer andk are the three-dimensional position and wave
vectors in a Lorentz framé with basis &), i.e., x=r
+cte, andK =k+ (w/c)e,. Here,c is the velocity of light in
vacuum,t is the time inL, o is the angular frequenc;el2
=1,i=1,2,3, andgj=—1.

It can be showh7] that these beams become orthonormal,
provided the following conditions are met.

(i) og is a plane with unit normad), passing through the
point r=0.

(ii) The tangential component

t(b)=k(b)—a[q-k(b)] (2.9

of k(b) is real for allbe B, and the mappind—t(b) is
one-one(injective).
(i) B=B,, and the functiorv(b) is given by
N
v(b)=5—

ar

NoJ(b)
9(b)W'(b)QW(b)’

(2.6

Here,J(b)=D(t))/D(¢') is the Jacobian determinant of the
mappingb—t(b), calculated in terms of the local coordinate
systems £,i=1,2) and ¢,j=1,2), anddB=g(b)d&tdé2.

In this paper, we treat electromagnetic fields in free space

and weak gravitational fields, defined by the spherical har
monicsY;(6,¢) as

) 2 02 .
Wf(r,t)=e"“’tjo dch et eV 0,0)
1

Xv(0,0)W(0,0)sin6do, (2.7
where
YM(6,9)=N;,P|™(cose)e™, (2.9
(21+21)(1 = |m)!
Nim= \/W (2.9

and P["(cos#) are the spherical Legendre functidiis,17.
For these fields, is a unit sphere§,=S?), B is its zone
with 6e[0,,0,] andp €[0,27], anddB=sin d6de.

sideration can be expanded into a serie§7as

+oo |

Wirn=e > iljitkn > YI(OW!, (210

wherek=2m/\=wlc, j,(kr) are the spherical Bessel func-
tions[16,17, Y{'(r)=Y["(y.#), and

r=r/r=siny(e, cosy+e,siny)+e;cosy. (2.11)

The coordinate independent vector coefficiekg’ com-
pletely characterize these fielf|.

B. Beam bases

To set the beam base of fielmzjs(r,t) (2.7), it is neces-
sary to specify propagation directiofsnit wave normalk
=k/k=Kk(6,¢)] and polarizationgnormalized vector ampli-

tudesW( 0, ¢)] of all partial plane waves. The former can be
set both for electromagnetic and weak gravitational fields by

k(6,p)=sin6’ (e, cose’ +e,sing’)+e;cosb’,
(2.12

whered’ =6’ (6,¢) ande’'=¢’'(0,¢) are some given func-
tions. In this paper, we restrict our consideration to beams
with

0’ = Ko, (2.13

where kg is some real parameter<Oko<1. Each of these

beams comprises plane waves with wave norrﬁdysing in
the same solid angl@ = 2 (c0oSkyb;—COSkpby).

To set the amplitude functions, it is convenient to use the
unit basis vectors

o' =0,

e(0',¢)=sinf’ (e cose+e,sing)+e;cosh’,

(2.143

ey (0’ ,p)=cosh’ (e, cosp+e,sing)—e;sing’,
- (2.14bh
e,(¢)=—¢e sinp+e,cose. (2.149

1. Amplitude functions for electromagnetic fields

To treat electromagnetic beams in free space, we set

o el o)

where g is the antisymmetric tensor dual @(q*E=q
X E). The normal component of time average Poynting’s
vectorS can be written a§;=q- S= W'QW. Therefore, the
condition{W?|Q|W?) =N, is in fact the normalization to the
beam energy fluNg through the planer,. We assume be-
low thatg=e;.

Let us set two amplitude functions by

E
B

0
q><

_qX
0

. C
Q= T6m

w

(2.19
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E
B

(2.163

€

W<0,<p)s( o

(%)

Beams with the amplitude functiokV [Eq. (2.163] are
formed from plane waves with the meridional orientation of
E and the azimuthal orientation &. They will be referred
to ask,, beams oB, beams. Similarly, the amplitude func-
tion W [Eq. (2.16b] results inE, beams 0B, beams. Since
the field vectors ofg,, and E, beams are related by the
duality transformatiorE— B, B— —E, we treat below only
the Ey, beams.

€

2.16
_e(./u ( b

2. Amplitude functions for weak gravitational fields

PHYSICAL REVIEW E63 036606

The functionW(0,¢) is frequency-independent. If the
beam state function(6,¢) also is frequency-independent,
or its frequency dependence is negligibly small, we have

o . 2m 0,
WjS(r’t):e—lwtjo d(}pjezeﬂk(ﬁ,cp)Y}S(ey(P)
1

XjolPolr-k(6,¢)~ wt]}

Xv(6,0)W(6,¢)singda, (2.22

wherew=(w, +w_)/2 andpy=Aw/w. Hence, the beam is
formed from plane-wave packets moving with the light ve-
locity ¢. Upon integratinng(r,t) with respect to spatial
coordinates, we obtain the norm

N = [ Wi oW vav

The gravitational fields are governed by the nonlinear

Einstein equations, which can be linearized in the case of

weak fields[18]. Let

(2.17)

O l=e e teRetere—e0e

be the twice contravariant metric tensor of free space, where

® is the tensor product. A weak gravitational wave can b
treated as a small variatioh of the metric tensorg!

43¢

Kow?Aw

2’7T 02 2
J dqu 1Y§(6,0)v(6,0)|
0 0,

Sha

RV Va)
PRI (0,0)W(0,0)d0.

(2.23

%or the beams under consideration, this norm is finite. In

particular, for electromagnetic fields with the amplitude

=g, *+h. For each plane weak gravitational wave, theres nctions W [Egs.(2.16], we haveWW=|E|2+|B|?, i.e.

exists a reference frame in which this wave is transvers
[18]. A transverse wave with the wave vector ke, satisfies
the conditionsh-e=h-e,=0 ande,-h=¢,-h=0. It is de-
scribed by a symmetric tensbrwith zero trace §;=0) and
has two independent polarization states given by
hi(6,¢)=3(ey @€y —€,08,), (2.183

hy(0,0)=3(ey®€,+€,86)). (2.180

ﬁv‘vfn is proportional to the total energy of the field.

I1l. ORTHONORMAL ELECTROMAGNETIC BEAMS
In this section, we consider the time-harmonic bewfs
[Eq. (2.7)] with ;=0 and#,<m/2.

A. Beams with Q=27 and xy=1

To obtain families of orthonormal beams with= 2,

To obtain orthonormal gravitational beams, we use theyne can se;=0, 6,= /2, andk,=1. In this case, the

amplitude functions

hi(e,@):hliihzz%(egriie‘p)@)(eeriieq,).

(2.19

These amplitudes satisfy the relations

(h1Q.h.)=cos#’, (h1Q.h;)=0 (2.20

with Q. = =iel .

C. Quasimonochromatic beams

In this paper, we also treat bearﬁ\tjs(r,t) with three-
dimensional beam manifolB;=BX[w_ ,w ], related with
Wi(r,t) [Eq. (2.7)] as

< s 1 w4 s
Wj(l’,t):mjct Wj(r,t)dw, (2.21)

where Aw=(w,—w_)/2. In the case of quasimonochro-
matic beamsA w<w.

beam manifolds is the northern hemisphef&, of $?, and

the functionv=v(6,¢) reduces to a constant. Electric and
magnetic fields as well as energy parameters of such ortho-
normal beams are found in explicit form in REY). In par-
ticular, it is shown that time average energy densitiesand

w,, of electric and magnetic fields, and Poynting’s ve@pr
can be written as

We=WoWy, Wn=WoWa, Wo=Sy/C, (3.1
S=Sy(Sher+ Sheat Sies),  S=No/A% (32

where
er= €, CoSy+ e, siny, (3.39
ey=—e; siny+e, cosy, (3.3b
r=Reg+ze;, R=rsiny, z=rcosy, (3.30

andwe, Wy, S;, Si, and Sy are independent of the azi-
muthal angleys. Some energy characteristics, such as the
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FIG. 1. Normalized energy density’ =wy+w,; R'=R/\; T
7/ =zI\; Q=27 j=s=2. M

dependence o8y and S, on R at the planez=0, are pre- . _ ) )
sented in Ref[7]. However, to gain a better insight into the FIG. 3. Poynting’s vector field with whirl structure; the param-
. = ' ) .eﬁers of the beam and the notations are the same as for Fig. 2.
unique properties of these beams, an analysis of the spatia
distribgtions of energy (.jens_ity.and. energy fluxes is. needed. B. Beams with Q<2 and r,<1/2
To illustrate the spatial distribution of the normalized en-
ergy densityw’ =wy, +w,, it is sufficient to calculate val-
ues ofw’ in a meridional plane. High energy density in a
very small core regioiisee Fig. 1is a distinguishing feature
of the fields under consideration. S
For the beams defined by the zonal spherical harmonicgvi_’ ) ¢ _ N
(s=0), Sp=0 [7]. Lines of energy flux for such beams lie in Which(W}|Q|W},)=0 if at least one of the three conditions
meridional planegsee Figs. 2 and)3For the beams witls IS met:j’#], s"#s, or the beams have the alternative po-
#0, lines of energy flux have twisting and spiral forgsge  larization statesiy andE, beams.
Fig. 4). Such localized fields can be described as a kind of

The beam base used above results in two different sets of
orthonormal beams defined by the spherical harmohr]%s
with even and odd, respectively. But it may be advanta-
geous to obtain a complete system of orthonormal beams
defined by the whole set of spherical harmormf,s for

electromagnetic “tornados.”
N R PN A N
1'54 [ \ \ \ y ¢« 1 / f / VRN
“”\Q\‘ A/;/A,,‘
Ir~ 4 ¢ T \ * ; / A A
~ b 44> LA N S B
~ My, 4 /‘/‘f T\\ LR R
0.5 N » / * * \ 4 v ¢ P
, Lyt {//,, ,\\\\ P, ,
Z 0 N A N ?\ T Y oy L | T /4T i ) i Z
PR R S U
4 v 1 \ : { / (RN
SRR S ARR AR
v 4 b 4 4 Y 4 4~
_1,‘\A///f *\\\A,“
AN N N
NI A APV T U S
_1'544"/f*\<—14\\\\\
-1.5 -1 -0.5 0 0.5 1 1.5
Xl
FIG. 2. Poynting’s vector field in the plané=0; Q=27 | FIG. 4. Lines of energy fluxQ)=27; j=s=2; x'=xY\; y’
=2,5=0; x'=xY\; z/=x%/\. =x2IN; 2/ =X3/\.
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FIG. 5. Normalized energy density’ =wy,+w,; R'=R/\;
z'=z/I\; Q=27 kg=1/2; j=2,5=0.
To this end, let us set the beam base by E24.2—(2.16)
with 6;=0, 6,= 7, andky=<3. In this case, the beam mani-
fold is the unit sphere 8=S?), Q=2m(1— coskym)<2r,
and
14 = . . .
A csing FIG. 6. Line of energy fluxg,=5%/6; j=4, s=2; X' =x/\;

y'=x2I\; 2/ =x3/\.
The smallerkg is, the smaller i}, i.e., the beam be-
comes more collimated. Conversely, if,=1/2, i.e.,, {1  whirls for which the time average Poynting vec®has the
=27, the beam has a pronounced core redigge Fig. 5. only nonvanishing componeriazimuthal, i.e., S= SySyen
Whens+0 andxo=3, Or ko~ 3, Such beams also resemble [6—g]. This component, as well as the energy densities

electromagnetic tornados with spiral energy fluxes. andw,, of the electric and magnetic fields, is independent of
the azimuthal angles. The whirls withj>s=1 have two
IV. ELECTROMAGNETIC STORMS, WHIRLS, major domaingabove and below the equatorial planeth
AND TORNADOS large energy fluxeg8]. The whirls withj=s=1 have only

) ) . ) ) _ one such domain, and the energy flux peaks in the equatorial
Let us briefly outline unique properties of time-harmonic plane.
localized fieldsW; [Eq. (2.7)] with 6,=0, 7/2< 6,<, and Let us now consider a family of field&/$ [Eq. (2.7)] with
ko=1, i.e., with ¢'=6 and 2r<Q=<4m. For the sake of ¢ =0, w/2<6,<m, and k,=1, i.e., with '=6 and 2r
simplicity, we assume that the beam state function <(O<4s. Similar to storms and whirls, these fields are
=v(0,¢) reduces to a constant. A set of these exact timehighly localized. However, the normal and radial compo-
harmonic solutions of the free-space homogeneous MaxweHents of time average Poynting’s vec®are not vanishing.
equations consists of three subsets—"storms,” “whirls,” As a result, lines of energy flux become spifste Fig. ,
and “tornados”—for which time average energy flux is provided thas+0. Figure 6 shows a typical energy flux line
identically zero at all points, azimuthal and spiral, respecof such a field. We refer to these unique localized fields with
tively. ) . ) spiral energy flux lines as electromagnetic tornados. They
If 6,=m, B=S", and}=4, the fields under consider- pear some similarities to the fields treated in Sec. Il A, but

ation are formed from plane waves of all possible propagatheir lines of energy flux more closely resemble spirals. As
tion directions. They are in effect three-dimensional standing, tends tor, the step of these spirals decreases.

waves with a rather involved structure of interrelated electric ~ For the fields withs=0, 6,=0, 7/2<@,<, and

and magnetic field§6—9]. _ _ =1, the lines of energy flux lie in meridional planes. These
For Ex andB, electromagnetic storms, both of which are fie|ds are intermediate in properties between the electromag-

average Poynting vectds is vanishing at all point§6—9].  |jj o).

The electric fieldE of E, storms has the only nonvanishing

componentazimuthal, whereas the azimuthal component of

the magnetic field is everywhere zero. The opposite situa-

tion occurs withB, storms. Electromagnetic and weak gravitational plane waves are
The spherical harmonics with# 0 define electromagnetic described by antisymmetrid= and symmetrich four-

V. LOCALIZED WEAK GRAVITATIONAL FIELDS
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dimensional field tensors, respectively. Both tensors have / 2
zero trace. For each family of electromagnetic fields treated

in the previous sections, there exists a similar family of weak
gravitational fields defined by the same spherical harmonics
Some significant features, such as the localization of field
oscillations, are characteristic for both fields. In this section, 4
we present two types of localized weak gravitational fields in ,

the source free space, defined by E(.7), (2.18, and 0.2
(2.19 with k=1 (0'=90).
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A. Orthonormal gravitational beams with Q=24

{
)

7

I

i
iy

To obtain orthonormal gravitational beams with= 2,
we seth,=0, 6,=7/2, kg=1, and replaceVN(6,¢) [EQ. R
(2.7] by ho.(6,¢) [Eq. (2.19]. In this case, the functiom BB
[Eq. (2.6)] reduces to a constant, and the beams are defined
by the real parts of complex tensor functions FIG. 7. Normalized intensityw’ of metric oscillationsw’

=2w_/v§; R'=RI\; 2/ =2/\; Q=2m; j=3; s=2.
h.(x)=h.(r,t)
. 2m w2 Wi:(hlht)t
— V4eflwtfo d(PJ'O elkr-er(6,<p)YjS( 0!@)

2 1
14
=23 {(335 Y[ 1+ cog+2 cod)?
Xh.(6,¢)singd 1650
v + (357 1+ cogF 2 cog)?+ (I35 Y sine2+ 2 sin|)?
=fe'(s‘/"‘“‘){plfs_z[l+co§i2coq P P
+ (355 sine2% 2 sin|) 2+ 6(J55[ sir?]) 2} (5.5
% SSt2 —
o] [1+cos'+2 cog Naturally, the normalization constaig [Eq. (2.3)] must
satisfy the conditiorw..<1. Then we obtain

—pal 75 Y[ sine2+ 2 sin|
PR sine2 =2 sinf+ (pepu) i) (h-1QIh.)= | (hLoh.)doo=No, (58
(5.1) %

where the integrand is given by
where

2 1
(hLQ.h.)= + 4 DZO {(JjS;’z[lJrcosth cog)?

p=exe p=exe +e*®e=3(1—p3), (5.29

— (355 [1+cosF 2 cod)+ 5 (I35 [sine2

pr=3(e0e3+8;6), py=e®e;, (5.2b
+2sin))?—3(355 [sine25 2 sin))?}. (5.7)
_ 1
e=(egtiey)/2, v4=3V2Ng. (5.3 If s=0, the latter reduces to
1

Complex scalar functions?™ f1=13"f](r,y) are defined (h1Q.h.)=v3> {I%cosdf1+cos]
by the spherical harmonic¥;, an integerm, and a scalar p=0
function f =f(#). The definitions and the properties of these + %J?l)l[sin]J?;[sinoz]}' (5.9

functions are presented in R¢Y]. The above notations em-
phasize the fact thaﬁ"[f](r,y) at fixedr and y are func- andw,=w_. For the beam$1_ andh,, defined by the
tionals regardind. For any giverf, If”[f](r,y) is a function  spherical harmonit’3, the intensity of metric oscillations is
of r and y. When it will not cause a misunderstanding, we illustrated in Figs. 7 and 8.
omit the argumentsr(y) and/or[ f]. The real and imaginary Orthonormal gravitational beams with <27 and kg
parts ofljSm can be separated §8] <1 can be obtained by using a beam state function that
differs from v(6) [Eq. (3.4)] only by a constant factor.
1= 1m0+ i), (5.49)
B. Gravitational whirls and storms

The intensity of metric oscillations is characterized by the Let us now se®);=0, 6,=m, kg=1, and define the am-
normw=(hh'),. Hence, we obtain plitude function by Eqs(2.18), assuming that the beam state

036606-6
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1,2.

" of metric oscillationsw’
4, j=3; s=1.

RIN; 2/ =1zIN; Q

=2w,/v3; R’ =

036606-7
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The intensities of metric oscillations for these fields are FIG. 10. Normalized intensityw

e4‘hn

given by
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FIG. 11. Normalized instantaneous energy density of an FIG. 12. Normalized instantaneous energy density of an
electromagnetic whirl moving with the velocity=0.4c e;, with electromagnetic whirl moving with the velocity=0.4c e;, with
respect to the framé’; j=4; s=2; x'=x"/\; y'=x¥I\; x¥'  respect to the frame'; j=4; s=2; x’=xY/\; 2/ =x3"/\; x¥'
=0. =0.

hy=v,i % "“Y{(ez@ert+ ea®er) (— 1)PIN[ cos]

r=0. At t=0, the whirl reaches its maximum intensity and

+(ey®e+e® eA)J?pl[sin]}. (5.13h closely resembles a time-harmonic whirl. In particular, lines
of energy flux are circular for both whirls. At 7/Aw<t

VI. MOVING AND EVOLVING STORMS, WHIRLS,

<0 and <t<w/Aw, the energy flux lines of the evolving

AND TORNADOS whirl are convergentFig. 13 and divergentFig. 14, re-
spectively. Wherni— * «, the field tends to zero at all points

The localized electromagnetic and gravitational fields dis
cussed above are time-harmonic in the Lorentz reference
frameL with basis €). In any other Lorentz framg’ with
basis €'), they will be observed as a kind of electromagnetic
[7] or gravitational missile moving without dispersing at
speedV<c. Because of the very involved dependence of
complex fieldsg, B, or h on time and spatial coordinates,
parameterdE|?, |B|?, or w=(hh"), provide only a rough
idea of the missile field structuf&], whereas instantaneous
values of real fields give an accurate picture. Figures 11 and
12 illustrate both the localization of field oscillations and the
asymmetry(Fig. 11) caused by the movement of whirls.

The time-harmonic solutions presented in the previous
sections can be applied as reasonably accurate models of real
physical fields. A more realistic description can be achieved
by integrating these solutions with respect to frequey
As illustration, let us consider basic properties of quasimo-
nochromatic fields defined by Eg®.21) and (2.22. To be
specific, we discuss below evolving electromagnetic whirls,
but other evolving electromagnetic and weak gravitational
fields (storms and tornadpan be treated similarly.

The field\fvjs(r,t) [Eq. (2.22] is formed from the infini-
tesimal plane-wave packets with the envelope function

. _sin(Po®o)
Jo(Powo) = —po% , (6.2)

FIG. 13. Convergent lines of energy flux of an evolving electro-

wheregy=r-k(6,¢) — wt. Sincepy<1, the field can be de- magnetic whir;Q=4m; j=s=4; p=0.05; ct=—7\; x'=x"/\;

scribed as an evolving whirl in the neighborhood of the pointy’ =x*/\; 2’ =x%\.
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FIG. 15. Radial componers; of the normalized energy flux
vector as a function @R’ =R/\ ; z=0;j=s=4; Aw/ 0=0.05; (A)
ct=—40\; (B) ct=30\.

specific electromagnetic fields witk<27 and 27r<()
<4 are presented.

The peculiarities of energy transport in such fields are
illustrated by the example of localized electromagnetic
fields. In a given Lorentz framk, a set of the obtained exact
time-harmonic solutions of the free-space homogeneous
Maxwell equations consists of three subgsterms, whirls,
and tornadosfor which time average energy flux is identi-
cally zero at all points, azimuthal and spiral, respectively. In
any other Lorentz frame’, they will be observed as a kind
of electromagnetic missile moving without dispersing at
speedv<c.

FIG. 14. Divergent lines of energy flux of an evolving electro-
magnetic whirl; Q=47; j=s=4; p=0.05; ct=8\; x'=x'/\;
y' =xYIN; 27 =3\

The evolution of the field can be described as follows. A
whirl originates at infinity att=—c as an infinitely small
converging wave. At< — /A w, there is a very small con-

verging wave with a maximum peak at the distance . L . . .
— —ct (see curveA in Fig. 15. During all this time, there is The properties of evolving fields, obtained by integrating

also a weak whirl in the neighborhood of the poirt0. It th_e time-ha_rmonic _solutions V\.'ith respect to frequency, are
passes through maxima and minima of activity, graduallf”‘_aﬂy outlined. Since (_evolvmg electrom_agnenc storms,
gaining in intensity as—0. Figure 15 illustrates the radial Whirls, torados, and various types of moving and evolving
energy fluxes at two different instants of minimum whirl mlssngs are descnbe_d_by the exact solutions of M_axyvells
activity. The total field can be described as the superpositiofduations and have finite total energy, they may exist in na-
of converging and expanding waves with ever-changing proture or can be excited. To this end, the modern antenna tech-
portion. Att>0, the whirl, still passing through maxima and nology [19] provides promising tools, such as large array
minima of activity, gradually transforms into an expandingantennas with tens of thousands and even well over 100 000
wave (see curveB in Fig. 15, which vanishes in infinity as elements, active integrated antennas, and beam-forming
t— +oo. It follows from Eq.(2.23 that the evolving storms, techniques.
whirls, and tornados have finite total energy. In this paper, the localized gravitational fields are treated
in the linear approximation. This gives grounds to propose
the problem of searching for exact solutions of the Einstein
empty space field equations, which reduce, in the case of
Unique solutions of wave equations, which describe localweak fields, to the solutions presented above. In solving this
ized electromagnetic and weak gravitational time-harmonigroblem, the evolving weak fields can be used as the initial
fields in the source-free space, are obtained using expansionenditions. To this end, it is necessary to set the initial mo-
in plane waves. These fields have a very small and clearlynentt,<— 7/Aw and the parametédy in such a way as to
defined core region with maximum intensity of field oscilla- obtain a weak converging wavetatt,. If Nq is sufficiently
tions. Outside the core, the intensity of oscillations rapidlysmall, the evolving field will remain everywhere weak at any
decreases in all directions. Each family of solutions consists>t,. However, by decreasing, and increasindNg, one
of vector or tensor functions that have integral expansions ican set the initial conditions to search for a nonlinear evolv-
plane waves propagating in the same given solid afigle  ing field that is everywhere weak and can be described by the
Our main concern in this paper is with the families of presented solutions only atst,. The further evolution of
orthonormal beams witlf) =27 and the families of three- this converging wave should be investigated by solving the
dimensional standing waves wifh=41. In addition, some Einstein equations.

VIl. CONCLUSION

036606-9
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